Answer:
[tex]v \approx 3.207\,\frac{m}{s}[/tex]
Explanation:
Let assume that ball's motion is frictionless and its geometric dimensions can be neglected. Besides, it is assumed that ball begins at a height of zero. The ball can be modelled by means of the Principle of Energy Conservation:
[tex]K_{A} = U_{g}[/tex]
[tex]\frac{1}{2}\cdot m \cdot v^{2} = m \cdot g \cdot h[/tex]
[tex]v = \sqrt{2\cdot g \cdot h}[/tex]
[tex]v = \sqrt{2\cdot (9.807\,\frac{m}{s^{2}} )\cdot (2\,m)\cdot \sin 15.2^{\textdegree}}[/tex]
The initial speed of the ball is:
[tex]v \approx 3.207\,\frac{m}{s}[/tex]