Respuesta :
Answer: 1.42
Explanation:
Given length of blade, r1 = 6.30
Distance from centre of the blade, r2 = 4.43m
Let
a1 = v1²/r1
a2 = v2²/r2
v1 = 2πr1/t
v2 = 2πr2/t
Now, substitute the values of v1 and v2 in a1 and a2, then
a1 = (2πr1/t)²/r1
a1 = (4π²r1²/t²)/r1
a1 = 4π²r1/t²
a2 = (2πr2/t)²/r2
a2 = (4π²r2²/t²)/r2
a2 = 4π²r2/t²
Ratio of centripetal acceleration is a2/a1 =
(4π²r2/t²) / (4π²r1/t²)
4π²r2t² / 4π²r1t²
a2/a1 = r2/r1
Ratio of centripetal acceleration then is 6.30/4.43 = 1.42
Answer:
Explanation:
Given:
R1 = 6.3 m
R2 = 4.43 m
Centripetal acceleration, ac = v^2/R
Where,
v = tangential velocity
R = radius if the motion
ac1 = v1^2/R1
ac2 = v2^2/R2
R1 × ac1 = ac2 × R2
6.3 × ac1 = ac2 × 4.43
1.42 × ac1 = ac2
Ratio of ac1 to ac2,
1 : 0.7.