Respuesta :
Answer:
The magnitude of the friction force on the disk is 12.76 N.
Explanation:
Given that,
Moment of inertia = 0.097 kg m²
Number of rotation = 5
Time = 2.4 s
Distance = 7.1 cm
Time = 1.4 s
We need to calculate the angular velocity
Using formula of angular velocity
[tex]\omega=\dfrac{n2\pi}{t}[/tex]
Put the value into the formula
[tex]\omega=\dfrac{5\times2\pi}{2.4}[/tex]
[tex]\omega=13.08\ rad/s[/tex]
We need to calculate the magnitude of the friction force on the disk
Using formula of torque
[tex]\tau=I\alpha[/tex]
[tex]F\cdot r=I\alpha[/tex]
Put the value into the formula
[tex]F\times7.1\times10^{-2}=0.097\times\dfrac{13.08}{1.4}[/tex]
[tex]F\times7.1\times10^{-2}\times1.4=0.097\times13.08[/tex]
[tex]F\times0.0994=1.26876[/tex]
[tex]F=\dfrac{1.26876}{0.0994}[/tex]
[tex]F=12.76\ N[/tex]
Hence, The magnitude of the friction force on the disk is 12.76 N.
Answer:
[tex]F=12.774\ N[/tex]
Explanation:
Given:
moment of inertia of the wheel, [tex]I=0.097\ kg.m^2[/tex]
no. of rotation of the wheel, [tex]n=5[/tex]
time taken to complete the above said rotations, [tex]t_r=2.4\ s[/tex]
distance of application of force by the brake pads, [tex]r_b=0.071\ m[/tex]
time taken to stop, [tex]t_s=1.4\ s[/tex]
Now the angular velocity of the wheel:
[tex]\omega=\frac{2\pi.n}{t_2}[/tex]
[tex]\omega=\frac{2\pi\times 5}{2.4}[/tex]
[tex]\omega=13.09\ rad.s^{-1}[/tex]
According the Newton's second law of motion:
[tex]\tau=I.\alpha\\F.r_b=I.\frac{\omega}{t_s}[/tex]
[tex]F\times r_b=0.097\times \frac{13.09}{1.4}[/tex]
[tex]F\times 0.071=0.9069[/tex]
[tex]F=12.774\ N[/tex]