Respuesta :
The motions of the blocks are given by the relationship between displacement, velocity and acceleration.
The correct responses are;
- a) The time needed for block A to rise 3 m is approximately 1.225 seconds.
- b) The relative velocity of block A, with respect to block B is approximately 2.899 m/s.
Reasons:
The given parameters are;
[tex]v_C[/tex] = -4 m/s
[tex]a_D[/tex] = 8 m/s²
a) Required:
The time block A needs to rise 3 meter.
Solution:
Please find attached the diagram of the block as obtained from a similar question online.
Length of the cable extending from point D across the pulley at A and back to the level of the pulley at D; L₁ = [tex]\mathbf{S_D}[/tex] + 2·[tex]\mathbf{S_A}[/tex]
[tex]\displaystyle Velocity = \mathbf{ \frac{Distance}{Time}}[/tex]
At t = 0, we have;
[tex]v_D[/tex] = 0
ΔL₁ = 0
Therefore;
[tex]v_{L1}[/tex] = 0
Which gives;
[tex]\displaystyle 0 = \frac{S_D + 2 \cdot S_A}{t} = \mathbf{ v_D + 2 \cdot v_A}[/tex]
[tex]\displaystyle 0 = v_D + 2 \cdot v_A[/tex]
[tex]\displaystyle Acceleration = \mathbf{ \frac{Velocity}{Time}}[/tex]
Which gives;
[tex]\displaystyle \frac{0}{t} = 0 = \frac{v_D}{t} + \frac{2 \cdot v_A}{t} = a_D + 2 \cdot a_A[/tex]
[tex]\displaystyle 0 = a_D + 2 \cdot a_A[/tex]
Therefore;
[tex]\displaystyle a_A = \mathbf{ -\frac{a_D}{2}}[/tex]
Which gives;
[tex]\displaystyle a_A = -\frac{8 \, m/s^2}{2} = -4 \, m/s^2[/tex]
[tex]\displaystyle a_A =-4 \, m/s^2[/tex]
From the kinematic equation of motion, s = u·t + 0.5·a·t², where u = 0, a = [tex]a_A[/tex]and s = h, we have;
s = 0.5·a·t²
Which gives;
[tex]h = 0.5 \cdot a_A \cdot t^2[/tex]
Therefore;
[tex]\displaystyle t = \sqrt{ \frac{h}{0.5 \cdot a_A} } = \mathbf{\sqrt{\frac{2 \cdot h}{a_A} }}[/tex]
Plugging in the values, with up direction taken as negative gives;
[tex]\displaystyle t = \sqrt{\frac{2 \times (-3 \, m)}{-4 \, m/s^2} } = \sqrt{1.5 \, s^2} \approx \mathbf{1.225 \, s}[/tex]
- The time needed for block A to rise 3 meters is t ≈ 1.225 s
b) Required:
The relative velocity of block A with respect to block B
Solution:
The relative velocity of block A with respect to block B = [tex]v_{AB} = \mathbf{v_A - v_B}[/tex]
The length of the cable at B, L₂ = [tex]S_B[/tex] + [tex](S_B - S_C)[/tex]
L₂ = [tex]2 \cdot S_B - S_C[/tex]
ΔL₂ = 0, we have;
[tex]\Delta L_2 = \Delta 2 \cdot S_B - \Delta \cdot S_C = 0[/tex]
Which gives;
[tex]\displaystyle \frac{\Delta L_2}{t} = \frac{0}{t} = 0 = \frac{2 \cdot \Delta S_B}{t} - \frac{\Delta \cdot S_C}{t} = \mathbf{2 \cdot v_B - v_C}[/tex]
- [tex]\displaystyle 0 = 2 \cdot v_B - v_C[/tex]
Which gives;
[tex]\displaystyle 2 \cdot v_B = v_C[/tex]
- [tex]\displaystyle v_B = \mathbf{\frac{1}{2} \cdot v_C}[/tex]
Therefore;
- [tex]\displaystyle v_B = \frac{1}{2} \times 4 \ m/s = 2 \ m/s[/tex]
[tex]v_A = a_A \times t[/tex]
[tex]a_A = 4 \ m/s^2[/tex]
[tex]t = \sqrt{1.5 \ s^2} \approx \mathbf{ 1.225 \ s}[/tex]
Which gives
[tex]v_A = 4 \ m/s^2 \times \sqrt{1.5 \ s^2}[/tex]
[tex]v_A - v_B = v_{AB} = 4 \ m/s^2 \times \sqrt{1.5 \ s^2} -2 \ m/s \approx \mathbf{ 2.899 \ m/s}[/tex]
- The relative velocity of block A with respect to block B, [tex]v_{AB}[/tex] ≈ 2.899 m/s
Learn more about motion in a pulley system here:
https://brainly.com/question/951137
https://brainly.com/question/2818647
![Ver imagen oeerivona](https://us-static.z-dn.net/files/d9d/1f8933aa6435ad0100ae71af9ae26e6a.jpg)