The motor draws in the cable at c with a constant velocity of vc= 4 m/s. The moto draws in the cable at D with a constant acceleration of aD=8 m/s^2. If vD=0 when t=0, determine: a) the time needed for block A to rise 3 m b)the relative velocity of block A with respect to block B when this occurs.

Respuesta :

Answer and Explanation:

The answer is attached below

Ver imagen sarahmoses1988

The motions of the blocks are given by the relationship between displacement, velocity and acceleration.

The correct responses are;

  • a) The time needed for block A to rise 3 m is approximately 1.225 seconds.
  • b) The relative velocity of block A, with respect to block B is approximately 2.899 m/s.

Reasons:

The given parameters are;

[tex]v_C[/tex] = -4 m/s

[tex]a_D[/tex] = 8 m/s²

a) Required:

The time block A needs to rise 3 meter.

Solution:

Please find attached the diagram of the block as obtained from a similar question online.

Length of the cable extending from point D across the pulley at A and back to the level of the pulley at D; L₁ = [tex]\mathbf{S_D}[/tex] +[tex]\mathbf{S_A}[/tex]

[tex]\displaystyle Velocity = \mathbf{ \frac{Distance}{Time}}[/tex]

At t = 0, we have;

[tex]v_D[/tex] = 0

ΔL₁ = 0

Therefore;

[tex]v_{L1}[/tex] = 0

Which gives;

[tex]\displaystyle 0 = \frac{S_D + 2 \cdot S_A}{t} = \mathbf{ v_D + 2 \cdot v_A}[/tex]

[tex]\displaystyle 0 = v_D + 2 \cdot v_A[/tex]

[tex]\displaystyle Acceleration = \mathbf{ \frac{Velocity}{Time}}[/tex]

Which gives;

[tex]\displaystyle \frac{0}{t} = 0 = \frac{v_D}{t} + \frac{2 \cdot v_A}{t} = a_D + 2 \cdot a_A[/tex]

[tex]\displaystyle 0 = a_D + 2 \cdot a_A[/tex]

Therefore;

[tex]\displaystyle a_A = \mathbf{ -\frac{a_D}{2}}[/tex]

Which gives;

[tex]\displaystyle a_A = -\frac{8 \, m/s^2}{2} = -4 \, m/s^2[/tex]

[tex]\displaystyle a_A =-4 \, m/s^2[/tex]

From the kinematic equation of motion, s = u·t + 0.5·a·t², where u = 0, a = [tex]a_A[/tex]and s = h, we have;

s = 0.5·a·t²

Which gives;

[tex]h = 0.5 \cdot a_A \cdot t^2[/tex]

Therefore;

[tex]\displaystyle t = \sqrt{ \frac{h}{0.5 \cdot a_A} } = \mathbf{\sqrt{\frac{2 \cdot h}{a_A} }}[/tex]

Plugging in the values, with up direction taken as negative gives;

[tex]\displaystyle t = \sqrt{\frac{2 \times (-3 \, m)}{-4 \, m/s^2} } = \sqrt{1.5 \, s^2} \approx \mathbf{1.225 \, s}[/tex]

  • The time needed for block A to rise 3 meters is t ≈ 1.225 s

b) Required:

The relative velocity of block A with respect to block B

Solution:

The relative velocity of block A with respect to block B = [tex]v_{AB} = \mathbf{v_A - v_B}[/tex]

The length of the cable at B, L₂ = [tex]S_B[/tex] + [tex](S_B - S_C)[/tex]

L₂ = [tex]2 \cdot S_B - S_C[/tex]

ΔL₂ = 0, we have;

[tex]\Delta L_2 = \Delta 2 \cdot S_B - \Delta \cdot S_C = 0[/tex]

Which gives;

[tex]\displaystyle \frac{\Delta L_2}{t} = \frac{0}{t} = 0 = \frac{2 \cdot \Delta S_B}{t} - \frac{\Delta \cdot S_C}{t} = \mathbf{2 \cdot v_B - v_C}[/tex]

  • [tex]\displaystyle 0 = 2 \cdot v_B - v_C[/tex]

Which gives;

[tex]\displaystyle 2 \cdot v_B = v_C[/tex]

  • [tex]\displaystyle v_B = \mathbf{\frac{1}{2} \cdot v_C}[/tex]

Therefore;

  • [tex]\displaystyle v_B = \frac{1}{2} \times 4 \ m/s = 2 \ m/s[/tex]

[tex]v_A = a_A \times t[/tex]

[tex]a_A = 4 \ m/s^2[/tex]

[tex]t = \sqrt{1.5 \ s^2} \approx \mathbf{ 1.225 \ s}[/tex]

Which gives

[tex]v_A = 4 \ m/s^2 \times \sqrt{1.5 \ s^2}[/tex]

[tex]v_A - v_B = v_{AB} = 4 \ m/s^2 \times \sqrt{1.5 \ s^2} -2 \ m/s \approx \mathbf{ 2.899 \ m/s}[/tex]

  • The relative velocity of block A with respect to block B, [tex]v_{AB}[/tex] ≈ 2.899 m/s

Learn more about motion in a pulley system here:

https://brainly.com/question/951137

https://brainly.com/question/2818647

Ver imagen oeerivona
ACCESS MORE