Answer:
13.20 cm/s is the rate at which the water level is rising when the water level is 4 cm.
Explanation:
Length of the base = l
Width of the base = w
Height of the pyramid = h
Volume of the pyramid = [tex]V=\frac{1}{3}lwh[/tex]
We have:
Rate at which water is filled in cube = [tex]\frac{dV}{dt}= 45 cm^3/s[/tex]
Square based pyramid:
l = 6 cm, w = 6 cm, h = 13 cm
Volume of the square based pyramid = V
[tex]V=\frac{1}{3}\times l^2\times h[/tex]
[tex]\frac{l}{h}=\frac{6}{13}[/tex]
[tex]l=\frac{6h}{13}[/tex]
[tex]V=\frac{1}{3}\times (\frac{6h}{13})^2\times h[/tex]
[tex]V=\frac{12}{169}h^3[/tex]
Differentiating V with respect to dt:
[tex]\frac{dV}{dt}=\frac{d(\frac{12}{169}h^3)}{dt}[/tex]
[tex]\frac{dV}{dt}=3\times \frac{12}{169}h^2\times \frac{dh}{dt}[/tex]
[tex]45 cm^3/s=3\times \frac{12}{169}h^2\times \frac{dh}{dt}[/tex]
[tex]\frac{dh}{dt}=\frac{45 cm^3/s\times 169}{3\times 12\times h^2}[/tex]
Putting, h = 4 cm
[tex]\frac{dh}{dt}=\frac{45 cm^3/s\times 169}{3\times 12\times (4 cm)^2}[/tex]
[tex]=13.20 cm/s[/tex]
13.20 cm/s is the rate at which the water level is rising when the water level is 4 cm.