Answer:
[tex]m_{HA}=0.784g[/tex]
Explanation:
Hello,
In this case, considering the dissociation of thiamine hydrochloride:
[tex]C_{12}H_{18}ON_4SCl_2 \rightleftharpoons H^++C_{12}H_{17}ON_4SCl_2^-[/tex]
It is convenient to write it as:[tex]C_{12}H_{18}ON_4SCl_2+H_2O \rightleftharpoons H_3O^++C_{12}H_{17}ON_4SCl_2^-[/tex]
Or:
[tex]HA+H_2O\rightleftharpoons H_3O^++A^-[/tex]
With which the Henderson-Hasselbalch equation is applied:
[tex]pH=pKa+log(\frac{[A^-]}{[HA]} )[/tex]
Therefore:
[tex]log(\frac{[A^-]}{[HA]} )=3.50-[-log(3.37x 10^{-7})]=3.50-6.47=-2.97}\\\\\frac{[A^-]}{[HA]} =10^{-2.97}=1.07x10^{-3}[/tex]
[tex][A^-]=1.07x10^{-3}}[HA][/tex]
Thus, as the pH equals the concentration of hydrogen which also equals the concentration of the conjugate base, one obtains:
[tex][H]^+=[A^-]=10^{-pH}=10^{-3.50}=3.16x10^{-4}M[/tex]
Now, solving for the concentration of acid ([HA]):
[tex][HA]=\frac{3.16x10^{-4}M}{1.07x10^{-3}} =0.296M[/tex]
Finally, the mass turns out:
[tex]m_{HA}=0.01000L*0.296\frac{mol}{L}*\frac{265.35g}{1mol}\\ m_{HA}=0.784g[/tex]
Best regards.