Answer:
A'(1,-3), B'(7,-1) and C'(5,-7).
Step-by-step explanation:
Given,
The coordinates of the triangle ABC are,
A(0, -2), B(2, -4), and C(3, -1)
If a point (x,y) is dilated about a point (p,q) with a scale factor k,
Then the dilation rule is,
[tex](x,y)\rightarrow (k(x-p)+p, k(y-q)+q)[/tex]
Here, the triangle ABC with coordinates A(0, -2), B(2, -4), and C(3, -1) is dilated with scale factor 2 about a point (-1,-1) to form triangle A'B'C'.
That is, k = 2, p = -1, q = -1
Then,
[tex](0,-2)\rightarrow (2(0+1)-1,2(-2+1)-1)=(1,-3)[/tex]
Similarly,
[tex](2,-4)\rightarrow (5,-7)[/tex]
[tex](3,-1)\rightarrow (7,-1)[/tex]
Therefore, the coordinates of triangle A'B'C' are,
A'(1,-3), B'(5,-7) and C'(7,-1)