Respuesta :
Answer:
R1 = 4.8Ω
Explanation:
The loop circuit has an initial voltage of V = IR
I = 2 A , R1 = R
V = 2R1
with the current reduced to 1.5A with an additional 1.6Ω resistor
the total resistance of the circuit is 1.6 + R1
the voltage of the two scenarios has to be equal , since the same voltage flows through the circuit
therefore V = 2R1
from Ohms law V = IR
2R1= 1.5 (1.6 + R1)
2R1 = 2.4 + 1.5R1
collecting like terms
2R1 - 1.5R1 = 2.4
0.5R1 = 2.4
R1 = [tex]\frac{2.4}{0.5}[/tex]
R1 = 4.8Ω
Answer:
4.8 Ω
Explanation:
From Ohm's Law,
Using,
I = E/(R+r)................. Equation 1
E = I(R+r)................. Equation 2
Where I = current, E = emf, R = external resistance, r = internal resistance
Given: I = 2 A, R = R1, r = 0 Ω
Substitute into equation 2
E = 2(R1)
E = 2R1.
When an additional 1.6 Ω resistor is added in series,
E = 1.5(R1+1.6)
2R1 = 1.5R1+2.4
2R1-1.5R1 = 2.4
0.5R1 = 2.4
R1 = 2.4/0.5
R1 = 4.8 Ω