Respuesta :
Answer :
(A) The rate expression will be:
[tex]Rate=-\frac{1}{2}\frac{d[HBr]}{dt}=+\frac{d[H_2]}{dt}=+\frac{d[Br_2]}{dt}[/tex]
(B) The average rate of the reaction during this time interval is, 0.00176 M/s
(C) The amount of Br₂ (in moles) formed is, 0.0396 mol
Explanation :
Rate of reaction : It is defined as the change in the concentration of any one of the reactants or products per unit time.
The given rate of reaction is,
[tex]2HBr(g)\rightarrow H_2(g)+Br_2(g)[/tex]
The expression for rate of reaction :
[tex]\text{Rate of disappearance of }HBr=-\frac{1}{2}\frac{d[HBr]}{dt}[/tex]
[tex]\text{Rate of disappearance of }H_2=+\frac{d[H_2]}{dt}[/tex]
[tex]\text{Rate of formation of }Br_2=+\frac{d[Br_2]}{dt}[/tex]
Part A:
The rate expression will be:
[tex]Rate=-\frac{1}{2}\frac{d[HBr]}{dt}=+\frac{d[H_2]}{dt}=+\frac{d[Br_2]}{dt}[/tex]
Part B:
[tex]\text{Average rate}=-\frac{1}{2}\frac{d[HBr]}{dt}[/tex]
[tex]\text{Average rate}=-\frac{1}{2}\frac{(0.512-0.600)M}{(25.0-0.0)s}[/tex]
[tex]\text{Average rate}=0.00176M/s[/tex]
The average rate of the reaction during this time interval is, 0.00176 M/s
Part C:
As we are given that the volume of the reaction vessel is 1.50 L.
[tex]\frac{d[Br_2]}{dt}=0.00176M/s[/tex]
[tex]\frac{d[Br_2]}{15.0s}=0.00176M/s[/tex]
[tex][Br_2]=0.00176M/s\times 15.0s[/tex]
[tex][Br_2]=0.0264M[/tex]
Now we have to determine the amount of Br₂ (in moles).
[tex]\text{Moles of }Br_2=\text{Concentration of }Br_2\times \text{Volume of solution}[/tex]
[tex]\text{Moles of }Br_2=0.0264M\times 1.50L[/tex]
[tex]\text{Moles of }Br_2=0.0396mol[/tex]
The amount of Br₂ (in moles) formed is, 0.0396 mol