A carbon rod with a radius of 1.9 mm is used to make a resistor. What length of the carbon rod should be used to make a 3.7 Ω resistor? The resistivity of this material is 1.8 × 10−5 Ω · m .

Respuesta :

Answer:

Length = 2.32 m

Explanation:

Let the length required be 'L'.

Given:

Resistance of the resistor (R) = 3.7 Ω

Radius of the rod (r) = 1.9 mm = 0.0019 m [1 mm = 0.001 m]

Resistivity of the material of rod (ρ) = [tex]1.8\times 10^{-5}\ \Omega\cdot m[/tex]

First, let us find the area of the circular rod.

Area is given as:

[tex]A=\pi r^2=3.14\times (0.0019)^2=1.13\times 10^{-5}\ m^2[/tex]

Now, the resistance of the material is given by the formula:

[tex]R=\rho( \frac{L}{A})[/tex]

Express this in terms of 'L'. This gives,

[tex]\rho\times L=R\times A\\\\L=\frac{R\times A}{\rho}[/tex]

Now, plug in the given values and solve for length 'L'. This gives,

[tex]L=\frac{3.7\ \Omega\times 1.13\times 10^{-5}\ m^2}{1.8\times 10^{-5}\ \Omega\cdot m}\\\\L=\frac{4.181}{1.8}=2.32\ m[/tex]

Therefore, the length of the material required to make a resistor of 3.7 Ω is 2.32 m.

The required length of material will be "2.32 m".

Resistance

According to the question,

Resistance, R = 3.7 Ω

Rod's radius, r = 1.9 mm or,

                        = 0.0019 m

Rod's resistivity, ρ = 1.8 × 10⁻5 Ω

We know the area or circular rod,

→ A = πr²

By substituting the values, we get

     = 3.14 × (0.0019)²

     = 1.13 × 10⁻⁵ m²

We know the relation,

→ R = ρ ([tex]\frac{L}{A}[/tex])

or,

ρ × L = R × A

Now, the length will be:

     L = [tex]\frac{3.7\times 1.13\times 10^{-5}}{1.8\times 10^{-5}}[/tex]

        = [tex]\frac{4.181}{1.8}[/tex]

        = 2.32 m

Thus the above answer is appropriate.

Find out more information about resistance here:

https://brainly.com/question/13735984

ACCESS MORE