Answer:
Value of bond = €1,015.31
Explanation:
We know,
Value of bond = [I × [tex]\frac{1 - (1 + r)^{-n}}{r}[/tex]] + [[tex]\frac{FV}{(1+r)^{n}}[/tex]]
Given,
Face Value, FV = €1,000
Coupon payment, I = FV × coupon rate
I = €1,000 × 3.8% = €38
Interest rate, r = 3.7% = 0.037
Putting the values into the above formula,
Value of bond = [€38 × [tex]\frac{1 - (1 + 0.037)^{-23}}{0.037}[/tex]] + (€1,000 ÷ [tex]1.037^{23}[/tex])
or, Value of bond = [€38 × [tex]\frac{1 - 0.433599}{0.037}[/tex]] + €433.5993
or, Value of bond = (€38 × 15.3081) + €433.5993
or, Value of bond = €581.7088 + €433.5993
Therefore, Value of bond = €1,015.31