contestada

A student of mass 57.4 kg, starting at rest, slides down a slide 17.2 m long, tilted at an angle of 28.1° with respect to the horizontal. If the coefficient of kinetic friction between the student and the slide is 0.108, find the force of kinetic friction, the acceleration, and the speed she is traveling when she reaches the bottom of the slide. (Enter the magnitudes.)

Respuesta :

Explanation:

(a)   Formula to calculate the force of kinetic friction is as follows.

             f = [tex]\mu N[/tex]

                = [tex]\mu mg Cos (\theta)[/tex]

Putting the given values into the above formula as follows.

          f = [tex]\mu mg Cos (\theta)[/tex]

           = [tex]0.118 \times 57.4 kg \times 9.8 \times Cos (28.1^{o})[/tex]

           = [tex]0.118 \times 57.4 kg \times 9.8 \times 0.882[/tex]

           = 58.54 N

Hence, the force of kinetic friction is 58.54 N.

(b)    Net force experienced by the block will be as follows.

            F = [tex]mg Sin (\theta) - f[/tex]

         ma = [tex]mg Sin (\theta) - \mu mg Cos (\theta)[/tex]

or,         a = [tex]g[Sin (\theta) - \mu Cos (\theta)][/tex]                  

                = [tex]9.8[Sin(28.1) - Cos(28.1)][/tex]

                = [tex]9.8 \times (0.471 - 0.882)[/tex]

                = 4.03 [tex]m/s^{2}[/tex]

Therefore, the acceleration is 4.03 [tex]m/s^{2}[/tex].

(c)    According to the third equation of motion,

          [tex]v^{2} = u^{2} + 2as[/tex]

                    = [tex]0 + 2 \times 4.03 \times 17.2[/tex]        

                    = 138.63 m/s

Hence, the speed she is traveling when she reaches the bottom of the slide is 138.63 m/s.

Answer:

Explanation:

mass, m = 57.4 kg

distance, d = 17.2 m

angle of inclination, θ = 28.1°

initial velocity, u = 0 m/s

coefficient of kinetic friction, μk = 0.108

(a) N is the normal reaction acting on the student.

N = mg Cosθ

N = 57.4 x 9.8 x Cos 28.1

N = 496.2 N

Friction force = μk x N

Friction force = 0.108 x 496.2 = 53.6 N

Let a is the acceleration

ma = mg Sinθ - friction force

ma = 57.4 x 9.8 x Sin 28.1 - 53.6

a = 3.7 m/s²

Let the speed is v.

v² = u² + 2ad

v² = 0 + 2 x 3.7 x 17.2

v = 11.3 m/s

ACCESS MORE