Answer:
The charge resides on the outer surface = [tex]1.245 \times 10^{-12}[/tex] C
Explanation:
Surface area of cell [tex](A) = 4.3\times 10^{-9} m^{2}[/tex]
Separation between two plate [tex](d) = 1.1 \times 10^{-8} m[/tex]
Dielectric constant [tex](k) = 4.2[/tex]
Potential difference [tex](\Delta V) = 85.7 \times 10^{-3} V[/tex]
The capacitance of parallel plate capacitor in free space is given by,
[tex]C = \frac{\epsilon_{o} A }{d}[/tex]
Where [tex]\epsilon_{o} =[/tex] permittivity of free space = [tex]8.85 \times 10^{-12}[/tex]
The Capacitance of capacitor is increase by [tex]k[/tex] times when it placed in dielectric medium.
[tex]C_{dielectric} = \frac{k \epsilon_{o} A }{d}[/tex]
And we know that, [tex]C = \frac{Q}{ \Delta V}[/tex]
So charge on the outer surface is given by,
[tex]Q = \frac{k \epsilon A \Delta V }{d}[/tex]
[tex]Q = \frac{4.2 \times 4.3 \times 10^{-9} \times 8.85 \times 10^{-12} \times 85.7\times 10^{-3} }{1.1 \times 10^{-8} }[/tex]
[tex]Q = 1.245 \times 10^{-12}[/tex]