Respuesta :
Answer:
2.46 * 10⁵ W/m³
Explanation:
See attached pictures for detailed explanation.
![Ver imagen abdullahfarooqi](https://us-static.z-dn.net/files/d73/1227f04d079013b7fbb85ace64934fad.png)
![Ver imagen abdullahfarooqi](https://us-static.z-dn.net/files/d49/f7d47c1c7dd6b946f1c0b172127ca23f.png)
![Ver imagen abdullahfarooqi](https://us-static.z-dn.net/files/d4f/ca64b3d15c61ef8f00ede60b91b12c81.png)
![Ver imagen abdullahfarooqi](https://us-static.z-dn.net/files/d08/7460e6931405d8e454fd5b8a4bd3188c.png)
Answer:
[tex]q^.=2.46*10^5W/m^3[/tex]
Explanation:
[tex]Given\\k=2.5W/m\\h_{1} =75(left)\\h_{2} =50(right)\\T_{1} =50^oC\\T_{2} =30^oC[/tex]
so
[tex]T=-\frac{q^.x^2}{2k} +c_{1}x+ c_{2} \\T=T_{1} \\at \\x=-0.04\\T=T_{2} \\at\\x=+0.04[/tex]
[tex]dT/dx=-q^.x/k+c_{1} \\T=T_{max} =300\\at\\x=c_{1} \frac{k}{q^.} (1)[/tex]
[tex]h_{1}(T_{1infinity} -T_{1} )=-k\frac{dT}{dx} |_{x=0.04} (2)\\-k\frac{dT}{dx} |_{x=0.04} =h_{2} (T_{2}-T_{2infinity} (3)[/tex]
[tex]300=-\frac{q^.}{2k} [c_{1} \frac{k}{q} ]^2+c_{1} [c_{1} \frac{k}{q} ]+c_{2} (1)[/tex]
[tex]75[50+\frac{q^2}{2k} (0.04)^2+c_{1} (0.04)-c_{2} ]=-k[\frac{+q^2(0.04)}{2k} ](2)[/tex]
[tex]-k[\frac{-q^.(0.04)}{2k} ]=50[\frac{-q^.(0.04)}{2k} +c_{1} (0.04)+c_{2} -30](3)[/tex]
solving above 3 equations for 3 unknowns c1,c2,q
we get [tex]q^.=2.46*10^5W/m^3[/tex]