In two or three sentences explain how you would solve for the real solutions of the following equation: please help asap!!
x^3 = -64

Respuesta :

the real solutions for the equation [tex]x^{3}=-64[/tex] are -

[tex]x=4,2+-2\sqrt{3i}[/tex]

Step-by-step explanation:

   [tex]x^{3}[/tex] = [tex]- 64[/tex]

   [tex]x^{3} +64[/tex]  = 0

   We can write 64 as  [tex]4^{3}[/tex]

  [tex]x^{3}[/tex] + [tex]4^{3}[/tex] = 0

  using the identity  ( [tex]x^{3}+y^{3} = (x+y)(x^{2} -xy+y^{2} )[/tex] )

we get,

  = [tex](x+4) (x^{2} -x*4+4^{2} )[/tex]

  = [tex](x+4)(x^{2} -4x+16)[/tex]    ....................(1)

 solving the quadratic equation  ,

   [tex]x^{2} -4x+16[/tex] =0

solutions of this quadratic equation can be obtained by

   [tex]x=-b +- \sqrt{b^{2}-4ac } /2a[/tex]

let use y for factors

[tex]x=-(-4x)+-\sqrt{(-4x^{2} )-4*x^{2} *16} / 2*x^{2}[/tex]

[tex]x=4x+-\sqrt{16x^{2} -64x^{2} } /2x^{2}[/tex]

[tex]x=4+-\sqrt{16-64}/2[/tex]

[tex]x=4+-4\sqrt{3i} /2[/tex]

[tex]x=2+-2\sqrt{3i}[/tex]    ..................(2)

from the equation 1 we have,

[tex]x-4=0[/tex]

which gives solution [tex]x=4[/tex]

and from equation 2 we got  [tex]x=2+-2\sqrt{3i}[/tex]

so the real solutions for the equation [tex]x^{3}=-64[/tex] are -

[tex]x=4,2+-2\sqrt{3i}[/tex]

ACCESS MORE