Answer:
[tex]f(9.012,1.982,5.972)\approx 120.76400[/tex]
Step-by-step explanation:
The partial derivatives of the function are, respectively:
[tex]\frac{\partial f}{\partial x} = 2\cdot x[/tex]
[tex]\frac{\partial f}{\partial y} = 2\cdot y[/tex]
[tex]\frac{\partial f}{\partial z} = 2\cdot z[/tex]
The linear approximation of the function follows the following model:
[tex]f(x,y,x) \approx f(9, 2, 6) + \frac{\partial f(9,2,6)}{\partial x}\cdot (9.01 - 9) + \frac{\partial f(9,2,6)}{\partial y}\cdot (1.98 - 2) + \frac{\partial f(9,2,6)}{\partial z}\cdot (5.972 - 6)[/tex]
[tex]f(9.012,1.982,5.972)\approx 121 + 18\cdot (9.01-9) + 4\cdot (1.98-2)+12\cdot (5.972-6)[/tex]
[tex]f(9.012,1.982,5.972)\approx 121 + 18\cdot (9.01-9) + 4\cdot (1.98-2)+12\cdot (5.972-6)[/tex]
[tex]f(9.012,1.982,5.972)\approx 120.76400[/tex]