Answer:
[tex]f(6.022,2.922,1.972)\approx 49.10400[/tex]
Step-by-step explanation:
The partial derivatives fo the function are:
[tex]\frac{\partial f}{\partial x} = 2\cdot x[/tex]
[tex]\frac{\partial f}{\partial y} = 2\cdot y[/tex]
[tex]\frac{\partial f}{\partial z} = 2\cdot z[/tex]
The linear approximation of the function at given value is:
[tex]f(6.022,2.992,1.972) \approx f(6,3,2) + \frac{\partial f(6,3,2)}{\partial x}\cdot (6.022-6) + \frac{\partial f(6,3,2)}{\partial y}\cdot (2.992-3) + \frac{\partial f(6,3,2)}{\partial z}\cdot (1.972-2)[/tex]
[tex]f(6.022,2.922,1.972)\approx 49 + 12\cdot (6.022 - 6) + 6 \cdot (2.992-3)+ 4 \cdot (1.972-2)[/tex]
[tex]f(6.022,2.922,1.972)\approx 49.10400[/tex]