Find the standard matrix of the linear transformation T. T: R^2->R^2 rotates points (about the origin) through 7/4π radians (with counterclockwise) rotation for a positive angle.

Respuesta :

Answer:

Step-by-step explanation:

The standard matrix A for a transformation where [tex]T:R^2\rightarrow R^2[/tex] is a transformation that rotates each point in [tex]R^2[/tex] about the origin through an angle [tex]\theta[/tex]

[tex]e_1=\left[\begin{array}{ccc}1\\0\end{array}\right] =\left[\begin{array}{ccc}\cos\theta\\\sin\theta\end{array}\right] \\\\e_2=\left[\begin{array}{ccc}0\\1\end{array}\right] =\left[\begin{array}{ccc}-\sin\theta\\-\cos\theta\end{array}\right][/tex]

Therefore the rotational transformation for [tex]\frac{7}{4\pi}[/tex]

[tex]\left[\begin{array}{ccc}\cos\frac{7}{4\pi}&-\sin\frac{7}{4\pi}\\\\\sin\frac{7}{4\pi}&\cos\frac{7}{4\pi}\end{array}\right][/tex]

In the given scenario, A  is the  standard matrix for just a transformation wherein  [tex]T : \mathbb{R}^2 \to \mathbb{R}^2[/tex]  is a transformation that rotates every point of [tex]\mathbb{R}^2[/tex] about origin thru an angle [tex]\varphi[/tex]:

[tex]e_1=\left[\begin{array}{cc}1\\ 0\\\end{array}\right] = \left[\begin{array}{cc} \cos \varphi \\ \sin \varphi\\\end{array}\right] \\\\\\e_2=\left[\begin{array}{cc}0\\ 1\\\end{array}\right] = \left[\begin{array}{cc} - \sin \varphi \\ \cos \varphi\\\end{array}\right][/tex]

Therefore the transformation of the rotational for [tex]\frac{7 \pi}{4}[/tex] is:

[tex]\to \left[\begin{array}{cc} \cos \frac{7 \pi}{4} & - \sin \frac{7 \pi}{4}\\ \sin \frac{7 \pi}{4} &\cos \frac{7 \pi}{4} \\\end{array}\right] = \left[\begin{array}{cc}\frac{\sqrt{2}}{2}& \frac{\sqrt{2}}{2}\\ - \frac{\sqrt{2}}{2}& \frac{\sqrt{2}}{2} \\\end{array}\right][/tex]

Learn more:

brainly.com/question/15534887

ACCESS MORE