Answer:
c) NORM.INV(R, 1200, 350)
Step-by-step explanation:
Given that the daily demand for gasoline at a local gas station is normally distributed with a mean of 1200 gallons, and a standard deviation of 350 gallons.
X = demand for gasolene at a local gas station is N(1200, 350)
R is any random number between 0 and 1.
Daily demand for gasolene would be
X = Mean + std deviation * z value, where Z = normal inverse of a value between 0 and 1.
The norm inv (R, 1200, 350) for R between 0 and 1 gives all the values of X
Hence correct choice would be
Option c) NORM.INV(R, 1200, 350)