The daily demand for gasoline at a local gas station is normally distributed with a mean of 1200 gallons, and a standard deviation of 350 gallons.
If R is a random number between 0 and 1, then which of the following correctly models daily demand for gasoline?

a) 1200 + 350 R
b) 1200 + 350*NORMSDIST(R)
c) NORM.INV(R, 1200, 350)
d) Both b) and c) are correct.

Respuesta :

Answer:

c) NORM.INV(R, 1200, 350)

Step-by-step explanation:

Given that the daily demand for gasoline at a local gas station is normally distributed with a mean of 1200 gallons, and a standard deviation of 350 gallons.

X = demand for gasolene at a local gas station is N(1200, 350)

R is any random number between 0 and 1.

Daily demand for gasolene would be

X = Mean + std deviation * z value, where Z = normal inverse of a value between 0 and 1.

The norm inv (R, 1200, 350) for R between 0 and 1 gives all the values of X

Hence correct choice would be

Option c) NORM.INV(R, 1200, 350)

ACCESS MORE