Consider a solution formed by mixing 50.0 mL of 0.100 M H2SO4, 30.0 mL of 0.1133 M HOCl, 25.0 mL of 0.200 M NaOH, 25.0 mL of 0.100 M Ba(OH)2, and 10.0 mL of 0.170 M KOH. Calculate the pH of this solution. Ka(HOCl) = 3.5×10-8 pH =

Respuesta :

Answer:

The pH of this solution is 12.1.

Explanation:

[tex]H_2SO_4[/tex]

[tex]H_2SO_4\rightarrow 2H^++SO_4^{2-}[/tex]

1 mole of sulfuric acid gives 2 moles of hydrogen ions, then 0.100 M of sulfuric acid will give :

[tex][H^+]=2\times [H_2SO_4]=2\times 0.100 M= 0.200 M[/tex]

Volume of sulfuric acid solution = 50.0 mL = 0.050 L ( 1 mL = 0.001 L)

Moles of hydrogen ions in sulfuric acid solution :a

[tex]a=0.200 M\times 0.050 L=0.01 mol[/tex]

HOCl

The dissociation constant value of HOCl = [tex]K_a=3.5\times 10^{-8}[/tex]

[tex]HOCl\rightleftharpoons H^++OCl^-[/tex]

initially

0.1133 M         0        0

At equilibrium :

(0.1133-x)         x         x

The expression of dissociation constant is given as:

[tex]K_a=\frac{[H^+][OCl^-]}{[HOCl]}[/tex]

[tex]3.5\times 10^{-8}=\frac{x\times x}{(0.1133-x)}[/tex]

Solving for x:

x = [tex]6.295\times 10^{-5} M[/tex]

[tex][H^+]=6.295\times 10^{-5} M[/tex]

Volume of HOCl solution = 30.0 mL = 0.030 L ( 1 mL = 0.001L)

Moles of hydrogen ions in HOCl solution = b

[tex]b=6.295\times 10^{-5} M\times 0.030 L=1.8885\times 10^{-6} mol[/tex]

Total moles of hydrogen ions = a + b

=[tex] 0.01 mol +1.8885\times 10^{-6} mol=0.010002 mol[/tex]

[tex]NaOH[/tex]

[tex]NaOH\rightarrow Na^++OH^{-}[/tex]

1 mole of NaOH gives 1 mole of hydroxide ions, then 0.200 M of NaOH acid will give :

[tex][OH^-]=1\times [NaOH]=1\times 0.200 M= 0.200 M[/tex]

Volume of NaOH solution = 25.0 mL = 0.025 L ( 1 mL = 0.001 L)

Moles of hydroxide ions in NaOH solution : c

[tex]c=0.200 M\times 0.025 L=0.005 mol[/tex]

[tex]Ba(OH)_2[/tex]

[tex]Ba(OH)_2\rightarrow Ba^{2+}+2OH^{-}[/tex]

1 mole of [tex]Ba(OH)_2[/tex] gives 2 mole of hydroxide ions, then 0.100 M of

[tex][OH^-]=2\times [Ba(OH)_2]=1\times 0.200 M= 0.200 M[/tex]

Volume of [tex]Ba(OH)_2[/tex]solution = 25.0 mL = 0.025 L ( 1 mL = 0.001 L)

Moles of hydroxide ions in [tex]Ba(OH)_2[/tex] solution : d

[tex]d=0.200 M\times 0.025 L=0.005 mol[/tex]

[tex]KOH[/tex]

[tex]KOH\rightarrow K^++OH^{-}[/tex]

1 mole of KOH gives 1 mole of hydroxide ions, then 0.170 M of KOH will give :

[tex][OH^-]=1\times [KOH]=1\times 0.170 M= 0.170 M[/tex]

Volume of KOH solution = 10.0 mL = 0.010 L ( 1 mL = 0.001 L)

Moles of hydroxide ions in KOH solution : e

[tex]e=0.170 M\times 0.010 L=0.0017 mol[/tex]

Total moles of hydroxide ions : c + d + e

[tex]0.005 mol + 0.005 mol + 0.0017 mol = 0.0117 mol[/tex]

Total moles of hydrogen ions = 0.010002 mol

Total moles of hydroxide ions =  0.0117 mol

1 mole of hydrogen ion reacts with 1 mole of hydroxide ion to from a water with neutral pH.

Hydrogen ions <  hydroxide ion

So, 0.0117 moles of hydroxide ion will neutralize 0.0117 moles of hydrogen ions.

Moles of hydroxide left after neutralization = 0.0117 mol - 0.010002 mol

= 0.001698 moles

Concentration of hydroxide ions left in the solution :

[tex][OH^-]=\frac{0.001698 mol}{0.050 L+0.030 L+0.025 L+0.025 L+0.010 L}=0.01213 M[/tex]

[tex]pOH=-\log[OH^-]=-\log[0.01213 M]=1.9[/tex]

pH = 14 - pOH

pH = 14 - 1.9= 12.1

The pH of this solution is 12.1.

ACCESS MORE