Respuesta :

The asymptote is [tex]x=-3[/tex]

Domain is [tex](-3, \infty)[/tex]

Range is [tex](-\infty, \infty)[/tex]

Explanation:

Given that the function is [tex]y=\log _{3}(x+3)[/tex]

Asymptote:

The function has no horizontal asymptote.

The given function is of the form, [tex]f(x)=c \cdot \log _{a}(x+h)+k[/tex] has a vertical asymptote [tex]x=-h[/tex]

where [tex]h=3[/tex]

Thus, the vertical asymptote is [tex]x=-3[/tex]

Domain:

The domain of the function is the set of all independent x - values for which the function is real and well defined.

Let us find the positive values for log

Thus, we have,

[tex]x+3>0[/tex]

     [tex]x>-3[/tex]

Thus, the function domain in interval notation is [tex](-3, \infty)[/tex]

Range:

The range of the function is the set of all dependent y - values of the function.

Hence, the range of the function is [tex](-\infty, \infty)[/tex]

Ver imagen vijayalalitha