The asymptote is [tex]x=-3[/tex]
Domain is [tex](-3, \infty)[/tex]
Range is [tex](-\infty, \infty)[/tex]
Explanation:
Given that the function is [tex]y=\log _{3}(x+3)[/tex]
Asymptote:
The function has no horizontal asymptote.
The given function is of the form, [tex]f(x)=c \cdot \log _{a}(x+h)+k[/tex] has a vertical asymptote [tex]x=-h[/tex]
where [tex]h=3[/tex]
Thus, the vertical asymptote is [tex]x=-3[/tex]
Domain:
The domain of the function is the set of all independent x - values for which the function is real and well defined.
Let us find the positive values for log
Thus, we have,
[tex]x+3>0[/tex]
[tex]x>-3[/tex]
Thus, the function domain in interval notation is [tex](-3, \infty)[/tex]
Range:
The range of the function is the set of all dependent y - values of the function.
Hence, the range of the function is [tex](-\infty, \infty)[/tex]