Answer:
5.55% of broilers weigh between 1143 and 1242 grams
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:
[tex]\mu = 1511, \sigma = 198[/tex]
What proportion of broilers weigh between 1143 and 1242 grams?
This is the pvalue of Z when X = 1242 subtracted by the pvalue of Z when X = 1143.
X = 1242
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{1242 - 1511}{198}[/tex]
[tex]Z = -1.36[/tex]
[tex]Z = -1.36[/tex] has a pvalue of 0.0869
X = 1143
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{1143 - 1511}{198}[/tex]
[tex]Z = -1.36[/tex]
[tex]Z = -1.86[/tex] has a pvalue of 0.0314
0.0869 - 0.0314 = 0.0555
5.55% of broilers weigh between 1143 and 1242 grams