An ideal vapor-compression refrigeration cycle operates at steady state with Refrigerant 134a as the working fluid. Saturated vapor enters the compressor at 1.25 bar, and saturated liquid exits the condenser at 5 bar. The mass flow rate of refrigerant is 8.5 kg/min. Determine the magnitude of the compressor power input required, in kW (report as a positive number).

Respuesta :

Explanation:

Note: Refer the diagram below

Obtaining data from property tables

State 1:

[tex]\left.\begin{array}{l}P_{1}=1.25 \text { bar } \\\text { Sat - vapour }\end{array}\right\} \begin{array}{l}h_{1}=234.45 \mathrm{kJ} / \mathrm{kg} \\S_{1}=0.9346 \mathrm{kJ} / \mathrm{kgk}\end{array}[/tex]

State 2:

[tex]\left.\begin{array}{l}P_{2}=5 \text { bor } \\S_{2}=S_{1}\end{array}\right\} \quad h_{2}=262.78 \mathrm{kJ} / \mathrm{kg}[/tex]

State 3:

[tex]\left.\begin{array}{l}P_{3}=5 \text { bar } \\\text { Sat }-4 q\end{array}\right\} h_{3}=71-33 \mathrm{kJ} / \mathrm{kg}[/tex]

State 4:

Throttling process  [tex]h_{4}=h_{3}=71.33 \mathrm{kJ} / \mathrm{kg}[/tex]

(a)

Magnitude of compressor power input

[tex]\dot{w}_{c}=\dot{m}\left(h_{2}-h_{1}\right)=\left(8 \cdot 5 \frac{\mathrm{kg}}{\min } \times \frac{1 \mathrm{min}}{\csc }\right)(262.78-234 \cdot 45)\frac{kj}{kg}[/tex]

[tex]w_{c}=4 \cdot 013 \mathrm{kw}[/tex]

(b)

Refrigerator capacity

[tex]Q_{i n}=\dot{m}\left(h_{1}-h_{4}\right)=\left(\frac{g \cdot s}{60} k_{0} / s\right) \times(234 \cdot 45-71 \cdot 33) \frac{k J}{k_{8}}[/tex]

[tex]Q_{i n}=23 \cdot 108 \mathrm{kW}\\1 ton of retregiration =3.51 k \omega[/tex]

[tex]\ Q_{in} =6 \cdot 583 \text { tons }[/tex]

(c)

Cop:

[tex]\beta=\frac{\left(h_{1}-h_{4}\right)}{\left(h_{2}-h_{1}\right)}=\frac{Q_{i n}}{\omega_{c}}=\frac{23 \cdot 108}{4 \cdot 013}[/tex]

[tex]\beta=5 \cdot 758[/tex]

Ver imagen arjunrv
ACCESS MORE