Respuesta :

Expression for the area of the shape ( right angled triangle ) is [tex]Area =(x^2+3x)[/tex] .

Step-by-step explanation:

Here we have , a right angled triangle with given dimensions:

[tex]Perpendicular = 2x[/tex]

[tex]Base = x+3[/tex]

Also ,it's known to us that area of right angled triangle = [tex]\frac{1}{2} (base)(height)[/tex] . Let's find out area of this given right angled triangle in figure with the dimensions

[tex]Perpendicular = 2x[/tex]

[tex]Base = x+3[/tex]

Area = [tex]\frac{1}{2} (base)(height)[/tex]

⇒ [tex]Area = \frac{1}{2} (base)(height)[/tex]

⇒ [tex]Area = \frac{1}{2} (base)(Perpendicular)[/tex]

⇒ [tex]Area = \frac{1}{2} (x+3)(2x)[/tex]

⇒ [tex]Area = \frac{1}{2} (2x^2+3(2x))[/tex]

⇒ [tex]Area = \frac{1}{2} (2x^2+6x)[/tex]

⇒ [tex]Area = \frac{1}{2} (2)(x^2+3x)[/tex]

⇒ [tex]Area =(x^2+3x)[/tex]

Therefore, Expression for the area of the shape ( right angled triangle ) is [tex]Area =(x^2+3x)[/tex] .

ACCESS MORE