Here we need to find the derivative of:
[tex]f(x)=ax+b[/tex]
with respect to x. In order to do so, we need to use the Definition of the derivative that tells us:
[tex]f'(x)=\underset{\Delta x\rightarrow0}{lim}\frac{f(x+\Delta x)-f(x)}{\Delta x}[/tex]
So:
[tex]f'(x)=\underset{\Delta x\rightarrow0}{lim}\frac{a(x+\Delta x)+b-(ax+b)}{\Delta x} \\ \\ f'(x)=\underset{\Delta x\rightarrow0}{lim}\frac{ax+a\Delta x+b-ax-b}{\Delta x} \\ \\ f'(x)=\underset{\Delta x\rightarrow0}{lim}\frac{ax-ax+a\Delta x+b-b}{\Delta x} \\ \\ f'(x)=\underset{\Delta x\rightarrow0}{lim}\frac{a\Delta x}{\Delta x} \\ \\ \boxed{f'(x)=a}[/tex]