Answer:
The integers are
5 and 7
Step-by-step explanation:
Let
x ---> the first consecutive odd integer
x+2 ---> the second consecutive odd integer
we know that
The algebraic expression that represent this situation is
[tex]x(x+2)=x+30[/tex]
solve for x
[tex]x^2+2x=x+30\\x^2+2x-x-30=0\\x^2+x-30=0[/tex]
Solve the quadratic equation
The formula to solve a quadratic equation of the form
[tex]ax^{2} +bx+c=0[/tex]
is equal to
[tex]x=\frac{-b\pm\sqrt{b^{2}-4ac}} {2a}[/tex]
in this problem we have
[tex]x^{2} +x-30=0[/tex]
so
[tex]a=1\\b=1\\c=-30[/tex]
substitute in the formula
[tex]x=\frac{-1\pm\sqrt{1^{2}-4(1)(-30)}} {2(1)}[/tex]
[tex]x=\frac{-1\pm\sqrt{121}} {2}[/tex]
[tex]x=\frac{-1\pm11} {2}[/tex]
[tex]x=\frac{-1+11} {2}=5[/tex]
[tex]x=\frac{-1-11} {2}=-6[/tex] ---> is not a odd integer
For x=5
The numbers are
[tex]x=5\\x+2=7[/tex]
so
5 and 7