Answer:
800 liters of 90% saline solution and 1200 liters of 40% saline solution should be used.
Step-by-step explanation:
Given:
At 2000 liters of 60% saline solution the attendant has to mix a 90% and a 40% saline solution.
Now, to find the number of liters of saline solution each should be used.
Let the liters of 90% saline solution mix be [tex]x.[/tex]
And let the liters of 40% saline solution mix be [tex]y.[/tex]
So, the total number of liters:
[tex]x+y=2000.[/tex]
[tex]y=2000-x\ \ \ ....(1)[/tex]
Now, the total percentage of saline solution:
[tex]90\%\ of\ x+40\%\ of\ y=60\%\ of\ 2000[/tex]
[tex]\frac{90}{100}\times x+\frac{40}{100}\times y=\frac{60}{100}\times 2000[/tex]
[tex]0.9x+0.4y=1200[/tex]
Substituting the value of [tex]y[/tex] from equation (1) we get:
[tex]0.9x+0.4(2000-x)=1200[/tex]
[tex]0.9x+800-0.4x=1200[/tex]
[tex]0.5x+800=1200[/tex]
Subtracting both sides by 800 we get:
[tex]0.5x=400[/tex]
Dividing both sides by 0.5 we get:
[tex]x=800.[/tex]
The liters of 90% saline solution mix = 800.
Now, substituting the value of [tex]x[/tex] in equation (1) to get the liters of 40% saline solution:
[tex]y=2000-x[/tex]
[tex]y=2000-800[/tex]
[tex]y=1200.[/tex]
Thus, the liters of 40% saline solution = 1200.
Therefore, 800 liters of 90% saline solution and 1200 liters of 40% saline solution should be used.