Answer:
2002
Step-by-step explanation:
The number of digits in a number is the ceil value of the base-ten logarithm of the number (ceil value means rounding up).
[tex]\text{Number of digits in }N=\left \lceil{\log N}\right \rceil[/tex]
When [tex]N = 2^{2001}[/tex]
[tex]x=\left \lceil{\log 2^{2001}}\right \rceil=\left \lceil{2001\log2} \right \rceil= 603[/tex]
When [tex]N = 5^{2001}[/tex]
[tex]y=\left \lceil{\log 5^{2001}}\right \rceil=\left \lceil{2001\log5} \right \rceil= 1399[/tex]
[tex]x+y=603+1399 = 2002[/tex]
Note that the sum x + y could be derived by finding the number of digits in [tex]2^{2001}\times5^{2001}=10^{2001}[/tex]
The number of zeros in [tex]10^{2001}[/tex] is 2001. Including the 1 in leftmost digit position gives 2001 + 1 = 2002