Respuesta :

Explanation:

[tex]The \ midpoint \ formula \ of \ the \ line \ segment \\ that \ joins \ the \ two \ points \ (x_{1},y_{1}) \ and \ (x_{2},y_{2}) \ is \\ given \ by \ the \ following \ Midpoint \ Formula:\\ \\ Midpoint=(\frac{x_{1}+x_{2}}{2},\frac{y_{1}+y_{2}}{2})[/tex]

  • Let's name the mid point of [tex]AB[/tex] as [tex]c[/tex]
  • Let's name the mid point of [tex]AC[/tex] as [tex]p[/tex]

Then:

[tex]c=(\frac{3+5}{2},\frac{4+8}{2}) \\ \\ c=(\frac{8}{2},\frac{12}{2}) \\ \\ c=(4,6) \\ \\ \\ p=(\frac{3+7}{2},\frac{4+8}{2}) \\ \\ p=(\frac{10}{2},\frac{12}{2}) \\ \\ p=(5,6)[/tex]

So the slope of the line that passes through [tex]c \ and \ p[/tex] is:

[tex]m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\ \\ m_{cp}=\frac{6-6}{5-4}=0[/tex]

And the slope for BC is:

[tex]m_{BC}=\frac{8-8}{7-5}=0[/tex]

As you can see, both slopes are zero, so these are horizontal lines.