Answer:
The value of work input to the compressor [tex]W_{in}[/tex] = 1505.7 [tex]\frac{KJ}{kg}[/tex]
The value of entropy generation inside the compressor
[tex]S_{gen} = - 1.064 \frac{KJ}{kg K}[/tex]
Explanation:
Initial pressure [tex]P_{1}[/tex] = 100 k pa
Final pressure [tex]P_{2}[/tex] = 1 M pa = 1000 k pa
At initial pressure [tex]P_{1}[/tex] = 100 k pa the steam is saturated vapour. From the steam tables the value of volume at this state is [tex]v[/tex] = 1.673 [tex]\frac{m^{3} }{kg}[/tex]
Thus the work input to the compressor [tex]W_{in}[/tex] = [tex]v[/tex] [tex]dP[/tex]
⇒ [tex]W_{in}[/tex] = [tex]v[/tex] ( [tex]P_{2}[/tex] - [tex]P_{1}[/tex] )
⇒ [tex]W_{in}[/tex] = 1.673 ( 1000 - 100 )
⇒ [tex]W_{in}[/tex] = 1505.7 [tex]\frac{KJ}{kg}[/tex]
The isentropic efficiency is = 85 %
So the work input to the compressor [tex]W_{in}[/tex] = [tex]\frac{1505.7}{0.85}[/tex]
⇒ [tex]W_{in}[/tex] = 1771.42 [tex]\frac{KJ}{kg}[/tex]
This is the value of work input to the compressor.
[tex]S_{gen} = - R \ln \frac{P_{2} }{P_{1} }[/tex]
[tex]S_{gen} = - 0.462 \ln \frac{1000}{100}[/tex]
[tex]S_{gen} = - 1.064 \frac{KJ}{kg K}[/tex]
This is the value of entropy generation inside the compressor.