Answer:
Therefore the required function is
[tex]P=5(\sqrt{3})^t[/tex]
Step-by-step explanation:
Given that , a population of deer triple every 2 years.
General growth formula is
[tex]A=P(1+r)^t[/tex]
A= population after t years.
P= initial population
r= rate of increase
t = time.
Given it started with 5 deer.
After 2 years, the number of deer= 15
Putting A=15, P=5,and t=2
[tex]15=5(1+r)^2[/tex]
[tex]\Rightarrow (1+r)^2=\frac{15}{5}[/tex]
[tex]\Rightarrow 1+r=\sqrt{3}[/tex]
[tex]\Rightarrow r=\sqrt{3}-1[/tex]
After t year the population of deer is P
Now, A=P, P=5 , t=t and [tex]r=\sqrt{3}-1[/tex]
[tex]P=5(1+\sqrt{3}-1)^t[/tex]
[tex]\Rightarrow P=5(\sqrt{3})^t[/tex]
Therefore the required function is
[tex]P=5(\sqrt{3})^t[/tex]