Respuesta :

The order from the least to the greatest is [tex]-\frac{26}{5}[/tex], [tex]-5 . \overline{17}[/tex], [tex]\sqrt{33}[/tex], and [tex]\frac{37}{6}[/tex].

Step-by-step explanation:

Step 1:

We must determine each of the individual values to be able to arrange the given numbers.

[tex]\frac{37}{6} = 6.166666,[/tex]

[tex]-5 . \overline{17}[/tex] means that so 1 and 7 in the decimal keep repeating so,

[tex]-5 . \overline{17} = -5.17171717.[/tex]

[tex]\sqrt{33} = 33^{\frac{1}{2} } = 5.7445,[/tex] and

[tex]-\frac{26}{5} = -5.2.[/tex]

Now that we have all the four values, we can arrange them in ascending order.

Step 2:

There are two negative numbers, the greater a negative number the lesser it is i.e. [tex]-6 < -5.[/tex]

So the least value is [tex]-\frac{26}{5}[/tex] which is followed by [tex]-5 . \overline{17}[/tex].

The other two are positive numbers. As [tex]5.7445 > 6.1666[/tex] so the highest number is [tex]\frac{37}{6}[/tex].

So the order from the least to the greatest is [tex]-\frac{26}{5}[/tex], [tex]-5 . \overline{17}[/tex], [tex]\sqrt{33}[/tex], and [tex]\frac{37}{6}[/tex].