order from least to greatest
![order from least to greatest class=](https://us-static.z-dn.net/files/dd3/9f6d6aee2e76235c7fe7e442149385f8.png)
The order from the least to the greatest is [tex]-\frac{26}{5}[/tex], [tex]-5 . \overline{17}[/tex], [tex]\sqrt{33}[/tex], and [tex]\frac{37}{6}[/tex].
Step-by-step explanation:
Step 1:
We must determine each of the individual values to be able to arrange the given numbers.
[tex]\frac{37}{6} = 6.166666,[/tex]
[tex]-5 . \overline{17}[/tex] means that so 1 and 7 in the decimal keep repeating so,
[tex]-5 . \overline{17} = -5.17171717.[/tex]
[tex]\sqrt{33} = 33^{\frac{1}{2} } = 5.7445,[/tex] and
[tex]-\frac{26}{5} = -5.2.[/tex]
Now that we have all the four values, we can arrange them in ascending order.
Step 2:
There are two negative numbers, the greater a negative number the lesser it is i.e. [tex]-6 < -5.[/tex]
So the least value is [tex]-\frac{26}{5}[/tex] which is followed by [tex]-5 . \overline{17}[/tex].
The other two are positive numbers. As [tex]5.7445 > 6.1666[/tex] so the highest number is [tex]\frac{37}{6}[/tex].
So the order from the least to the greatest is [tex]-\frac{26}{5}[/tex], [tex]-5 . \overline{17}[/tex], [tex]\sqrt{33}[/tex], and [tex]\frac{37}{6}[/tex].