Respuesta :
Answer:
5174.4 J
Explanation:
Parameters given:
Mass of calorimeter, m = 1.4 kg = 1400 g
Specific heat capacity, c = 3.52 J/g°C
Temperature difference, ΔT = 28.5 - 27.45 = 1.05 °C
Heat absorbed by reaction, Q = m * c * ΔT
Q = 1400 * 3.52 * 1.05
Q = 5174.4 J
Answer:
5174.4Joules
Explanation:
Heat capacity is defined as the quantity of heat required to raise the temperature of total mass of a substance by 1Kelvin. Mathematically,
Q = mc∆t where;
Q is the amount of heat absorbed (in Joules)
m is the mass of the substance (bomb calorimeter) in g or kg
c is the specific heat capacity of the bomb calorimeter in J/g°C
∆t is the change in temperature in °C
Given m = 1.4kg
Since 1kg = 1000g
1.4kg = (1.4×1000)g
m = 1.4kg = 1400g
c = 3.52J/g°C
∆t = final temperature - initial temperature
Since heat was absorb (heat gained), final temperature will be 28.5°C
Initial temperature = 27.45°C
Substituting the data given into the heat capacity formula will give us;
Q = 1400×3.52×(28.5-27.45)
Q = 1400×3.52× 1.05
Q = 5174.4Joules
Amount of heat absorbed by the reaction is 5174.4Joules