Answer:
x = [tex]\frac{ln(16)}{ln(2)}[/tex]
Step-by-step explanation:
[tex]4^{2x-1} =8^{x+2}[/tex]
ln both sides like you would add the same number to both sides to keep the equation equivalent
[tex]ln4^{2x-1} = ln 8^{x+2}[/tex]
using log rules, exponents can be brought down as a constant multiplying ln
[tex](2x-1)ln(4) =(x+2)ln(8)[/tex]
use distributive property to remove parentheses
2xln(4) - ln(4) = xln(8) + 2ln(8)
isolate x
2xln(4) - xln(8) = 2ln(8) + ln(4)
rewrite the logs using log rules: ln(x) - ln(y) = ln([tex]\frac{x}{y}[/tex]) and the exponent rule stated above
xln([tex]4^{2}[/tex])-xln(8) = ln([tex]\frac{8^{2} }{4}[/tex])
factor out x
x(ln[tex]4^{2}[/tex]-ln8) = ln([tex]\frac{8^{2} }{4}[/tex])
again use log rules: ln(x) - ln(y) = ln([tex]\frac{x}{y}[/tex])
x* [tex]ln(\frac{4^{2} }{8}[/tex][tex])[/tex]= ln([tex]\frac{8^{2} }{4}[/tex])
now simplify the stuff inside the ln parentheses
x*ln(2) = ln(16)
x = [tex]\frac{ln(16)}{ln(2)}[/tex]