Respuesta :

Answer:

x = [tex]\frac{ln(16)}{ln(2)}[/tex]

Step-by-step explanation:

[tex]4^{2x-1} =8^{x+2}[/tex]

ln both sides like you would add the same number to both sides to keep the equation equivalent

[tex]ln4^{2x-1} = ln 8^{x+2}[/tex]

using log rules, exponents can be brought down as a constant multiplying ln

[tex](2x-1)ln(4) =(x+2)ln(8)[/tex]

use distributive property to remove parentheses

2xln(4) - ln(4) = xln(8) + 2ln(8)

isolate x

2xln(4) - xln(8) = 2ln(8) + ln(4)

rewrite the logs using log rules: ln(x) - ln(y) = ln([tex]\frac{x}{y}[/tex]) and the exponent rule stated above

xln([tex]4^{2}[/tex])-xln(8) = ln([tex]\frac{8^{2} }{4}[/tex])

factor out x

x(ln[tex]4^{2}[/tex]-ln8) = ln([tex]\frac{8^{2} }{4}[/tex])

again use log rules:  ln(x) - ln(y) = ln([tex]\frac{x}{y}[/tex])

x* [tex]ln(\frac{4^{2} }{8}[/tex][tex])[/tex]=  ln([tex]\frac{8^{2} }{4}[/tex])

now simplify the stuff inside the ln parentheses

x*ln(2) = ln(16)

x = [tex]\frac{ln(16)}{ln(2)}[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico