Respuesta :
Answer:
[tex]\large \boxed{\text{22.9 min}}[/tex]
Step-by-step explanation:
Two important formulas in radioactive decay are
[tex](1) \qquad t_{\frac{1}{2}} = \dfrac{\ln 2}{k}\\\\(2) \qquad \ln \left(\dfrac{N_{0}}{N}\right) = kt[/tex]
1. Calculate the decay constant k
[tex]\begin{array}{rcl}t_{\frac{1}{2}} &=& \dfrac{\ln 2}{k}\\\\k &= &\dfrac{\ln 2}{t_{\frac{1}{2}}}\\\\ & = & \dfrac{\ln 2}{\text{6 min}}\\\\& = & \text{0.1155 min}^{-1}\\\end{array}[/tex]
2. Calculate the time
[tex]\begin{array}{rcl}\ln \left(\dfrac{N_{0}}{N}\right) &= &kt \\\\\ln \left(\dfrac{480}{34}\right) &= &\text{ 0.1155 min}^{-1}\times t \\\\\ln 14.12 &= & \text{ 0.1155 min}^{-1}\times t \\t &= &\dfrac{\ln 14.12}{\text{0.1155 min}^{-1}}\\\\& = & \textbf{22.9 min}\\\end{array}\\\text{It would take $\large \boxed{\textbf{22.9 min}}$ for the mass to decrease to 34 g}[/tex]