You are riding a ferris wheel while sitting on a scale. A ferris wheel with radius 9.7 m and a period 32s. Find the scale reading for a 60kg person at the bottom of the ferris wheel and the top of the ferris wheel, assuming it moves at a constant rate.

Respuesta :

Answer:

The scale reading at the top = 565.8N

The scale reading at the bottom = 610.44N

Explanation:

We are given:

t = 32seconds

R = 9.7meters

mass (m) = 60Kg

We take g as gravitational field = 9.8

Therefore, to find the scale reading (N) at the top, let's use the formula:

[tex] N_t = m (g - w^2 R) [/tex]

Where w = 2π/t

w = 2π/32 = 0.197

Substituting the figures into the equation, we have

[tex] N = 60 (9.8 - 0.197^2 * 9.7) [/tex]

N = 60 (9.8 - 0.37)

N = 60 * 9.43

Na = 565.8N

To find scalar reading at the bottom, we use;

[tex] N_b = m(g + w^2 R) [/tex]

= 60 (9.8 + 0.37)

= 60 * 10.17

[tex] N_b = 610.44 [/tex]

Answer:

The scale reading at the top is [tex]z_{top} = 565.6\mu N[/tex]

The scale reading at the bottom is [tex]z_{bottom} = 610.356\ N[/tex]

Explanation:

From the question

       The radius is [tex]r = 9.7 m[/tex]

       The period is [tex]T = 32sec[/tex]

      The mass is [tex]m =60kg[/tex]

Generally the mathematical representation for angular velocity of the wheel is

                  [tex]\omega = \frac{2 \pi}{T}[/tex]

                    [tex]= \frac{2*3.142}{32}[/tex]

                    [tex]= 0.196 \ rad/sec[/tex]

The velocity at which the point scale move can be obtained as

                     [tex]v = r\omega[/tex]

                        [tex]= 9.7* 0.196[/tex]

                       [tex]= 1.9 m/s[/tex]

Considering the motion of the 60kg mass as shown on the first and second uploaded image

Let the z represent the reading on the scale which is equivalent to the normal force acting on the mass.

          Now at the topmost the reading of the scale would be

                       [tex]mg - z_{top} =\frac{mv^2}{r} =m\omega^2r[/tex]

Where mg is the gravitational force acting on the mass and [tex]\frac{mv^2}{r}[/tex] is the centripetal force keeping the mass from spiraling out of the circle

Now making z the subject of the formula

                    [tex]z_{top} = mg - \frac{mv^2}{r}[/tex]

                       [tex]= m(g- \frac{v^2}{r})[/tex]

                       [tex]= 60(9.8 - \frac{1.9^2}{9.7} )[/tex]

                      [tex]= 565.6\mu N[/tex]

Now at the bottom the scale would be

                      [tex]z_{bottom}-mg = \frac{mv^2}{r} = m \omega^2r[/tex]

This is because in order for the net force to be in the positive y-axis (i.e for the mass to keep moving in the Ferris wheel) the Normal force must be greater than the gravitational force.  

Making  z the subject

                  [tex]z_{bottom}= mg +m\omega^2r[/tex]

                  [tex]z =m(g+\omega^2r)[/tex]

                  [tex]z= 60(9.8 + (0.196)^2 *(9.7))[/tex]

                     [tex]= 610.356\ N[/tex]

               

Ver imagen okpalawalter8
Ver imagen okpalawalter8
ACCESS MORE