Answer:
a) E(x)=3.565
b) c=3.8475 --> P(X < 3.8475) = 0.75
c) The probability that X falls above or below 0.28 min from the mean is P=0.4954.
Step-by-step explanation:
We have the cumulative distribution function as information.
a) To calculate the expected value, we can calculate the value of x in which F(x) equals 0.5. This happens for x=3.565.
[tex]F(x)=\frac{x-3}{1.13} =0.5\\\\x-3=0.5*1.13=0.565\\\\x=0.565+3=3.565[/tex]
b) What is the value c such that P(X < c) = 0.75?
In this case, we have to calculate x to have F(x)=0.75
[tex]F(x)=\frac{x-3}{1.13} =0.75\\\\x-3=0.75*1.13=0.8475\\\\x=0.8475+3=3.8475[/tex]
This happens for x=3.8475.
c) We have to calculate the probability that X falls above or below 0.28 min from the mean (x=3.565).
This is the probability that the time is between 3.285 and 3.845
[tex]x_1=3.565-0.28=3.285\\\\x_2=3.565+0.28=3.845[/tex]
We can calculate this as:
[tex]P(3.285<x<3.845)=F(3.845)-F(3.285)\\\\F(3.845)=\frac{3.845-3}{1.13}=\frac{0.845}{1.13}= 0.7478\\\\F(3.285)=\frac{3.285-3}{1.13}=\frac{0.285}{1.13}= 0.2522\\\\\\P(3.285<x<3.845)=F(3.845)-F(3.285)=0.7478-0.2522=0.4956\\\\[/tex]
The probability that X falls above or below 0.28 min from the mean is P=0.4954.