Respuesta :
Answer:
The initial concentration of ammonia is 0.14 M and the pH of the solution at equivalence point is 5.20
Explanation:
To calculate the number of moles for given molarity, we use the equation:
[tex]\text{Molarity of the solution}=\frac{\text{Moles of solute}}{\text{Volume of solution (in L)}}[/tex] .....(1)
Molarity of HCl solution = 0.164 M
Volume of solution = 23.8 mL = 0.0238 L (Conversion factor: 1 L = 1000 mL)
Putting values in equation 1, we get:
[tex]0.164M=\frac{\text{Moles of HCl}}{0.0238L}\\\\\text{Moles of HCl}=(0.146mol/L\times 0.0238L)=0.0035mol[/tex]
The chemical equation for the reaction of ammonia and HCl follows:
[tex]NH_3+HCl\rightarrow NH_4^++Cl^-[/tex]
By Stoichiometry of the reaction:
1 mole of HCl reacts with 1 mole of ammonia
So, 0.0035 moles of HCl will react with = [tex]\frac{1}{1}\times 0.0035=0.0035mol[/tex] of ammonia
- Calculating the initial concentration of ammonia by using equation 1:
Moles of ammonia = 0.0035 moles
Volume of solution = 25 mL = 0.025 L
Putting values in equation 1, we get:
[tex]\text{Initial concentration of ammonia}=\frac{0.0035mol}{0.025L}=0.14M[/tex]
By Stoichiometry of the reaction:
1 mole of ammonia produces 1 mole of ammonium ion
So, 0.0035 moles of ammonia will react with = [tex]\frac{1}{1}\times 0.0035=0.0035mol[/tex] of ammonium ion
- Calculating the concentration of ammonium ion by using equation 1:
Moles of ammonium ion = 0.0035 moles
Volume of solution = [23.8 + 25] mL = 48.8 mL = 0.0488 L
Putting values in equation 1, we get:
[tex]\text{Molarity of ammonium ion}=\frac{0.0035mol}{0.0488L}=0.072M[/tex]
- To calculate the acid dissociation constant for the given base dissociation constant, we use the equation:
[tex]K_w=K_b\times K_a[/tex]
where,
[tex]K_w[/tex] = Ionic product of water = [tex]10^{-14}[/tex]
[tex]K_a[/tex] = Acid dissociation constant
[tex]K_b[/tex] = Base dissociation constant = [tex]1.8\times 10^{-5}[/tex]
[tex]10^{-14}=1.8\times 10^{-5}\times K_a\\\\K_a=\frac{10^{-14}}{1.8\times 10^{-5}}=5.55\times 10^{-10}[/tex]
The chemical equation for the dissociation of ammonium ion follows:
[tex]NH_4^+\rightarrow NH_3+H^+[/tex]
The expression of [tex]K_a[/tex] for above equation follows:
[tex]K_a=\frac{[NH_3][H^+]}{[NH_4^+]}[/tex]
We know that:
[tex][NH_3]=[H^+]=x[/tex]
[tex][NH_4^+]=0.072M[/tex]
Putting values in above expression, we get:
[tex]5.55\times 10^{-10}=\frac{x\times x}{0.072}\\\\x=6.32\times 10^{-6}M[/tex]
To calculate the pH concentration, we use the equation:
[tex]pH=-\log[H^+][/tex]
We are given:
[tex][H^+]=6.32\times 10^{--6}M[/tex]
[tex]pH=-\log (6.32\times 10^{-6})\\\\pH=5.20[/tex]
Hence, the initial concentration of ammonia is 0.14 M and the pH of the solution at equivalence point is 5.20