Respuesta :

[tex]-\frac{3}{11}, \sqrt{36} \ and \ 3 \sqrt{200-4}[/tex] are rational numbers.

Solution:

Rational number:

Rational number is of the form [tex]\frac{p}{q} , \ q \neq0[/tex] where p and q are integers.

Option A:

[tex]$-\frac{3}{11}[/tex]

It is of the form [tex]\frac{p}{q} , \ q \neq0[/tex]. Therefore, it is a rational number.

Option B:

[tex]\sqrt{36}=\sqrt{6^2}[/tex]

square and square root get canceled.

[tex]\sqrt{36}=6[/tex]

Any integer can be written as that integer by 1.

[tex]$\sqrt{36}=\frac{6}{1}[/tex]

It is of the form [tex]\frac{p}{q} , \ q \neq0[/tex]. Therefore, it is a rational number.

Option C:

[tex]$\frac{-2 \pi}{5}[/tex]

we know that π is an irrational number.

So that [tex]\frac{-2 \pi}{5}[/tex] is not rational number.

Option D:

[tex]3 \sqrt{200-4}=3 \sqrt{196}[/tex]

[tex]3 \sqrt{200-4}=3 \sqrt{14^2}[/tex]

square and square root get canceled.

[tex]3 \sqrt{200-4}=3 \times 14 =42[/tex]

Any integer can be written as that integer by 1.

[tex]$3 \sqrt{200-4}=\frac{42}{1}[/tex]

It is of the form [tex]\frac{p}{q} , \ q \neq0[/tex]. Therefore, it is a rational number.

Hence [tex]-\frac{3}{11}, \sqrt{36} \ and \ 3 \sqrt{200-4}[/tex] are rational numbers.

ACCESS MORE