Respuesta :
Explanation:
Consider the given function  [tex]K(t)=\frac{1}{2} m(t) \cdot v(t)^{2}[/tex]
Given that the velocity of rocket is increases at the rate of [tex]15 m / \sec ^{2} \text { Hence } \frac{d v}{d t}=15[/tex]
The mass of rocket is decreasing at rate of [tex]10 \mathrm{kg} / \mathrm{sec}[/tex].
Hence [tex]\frac{d m(t)}{d t}=-10[/tex]
Now find the rate of change of kinetic energy when [tex]m(t)=2000 \mathrm{kg}=2 \times 10^{3} \mathrm{kg}[/tex]and [tex]v(t)=5000 m / \mathrm{sec}^{2}=5 \times 10^{3} \mathrm{m} / \mathrm{sec}^{2}[/tex]
Now consider the given equation,
[tex]\begin{aligned}&K(t)=\frac{1}{2} m(t) \cdot v(t)^{2}\\&\frac{d K}{d t}=\frac{1}{2}\left[m(t) \times 2 v(t) \times \frac{d v(t)}{d t}+v(t)^{2} \frac{d m}{d t}\right]\end{aligned}[/tex]
Now substituting the values [tex]m(t)=2000 k g=2 \times 10^{3} k g[/tex] and [tex]v(t)=5000 m / \mathrm{sec}^{2}=5 \times 10^{3} \mathrm{m} / \mathrm{sec}^{2}[/tex]
[tex]\begin{aligned}\frac{d K}{d t} &=\frac{1}{2}\left[2 \times 10^{3} \times 2 \times 5 \times 10^{3} \times 15+\left(5 \times 10^{3}\right)^{2}(-10)\right] \\&=\frac{1}{2}\left[300 \times 10^{6}+(-250) \times 10^{6}\right] \\&=\frac{1}{2}\left[(50) \times 10^{6}\right] \\&=25 M J\end{aligned}[/tex]
The rate at which kinetic energy changing is 25MJ