Answer:
Therefore the dimensions of the fence 24 feet by 10 feet.
Step-by-step explanation:
Rectangle
Given
The perimeter of the fence is 68 feet
The area of the rectangular yard is 240 square feet
Let the length be x feet and breadth is y feet
According to the problem,
2(length+breadth)=68
⇒2(x+y)=68
⇒[tex](x+y)=\frac{68}{2}[/tex]
[tex]\Rightarrow x+y=34[/tex] .......(1)
The area of the rectangular is
length×breadth=240
⇒x×y=240
[tex]\Rightarrow x=\frac{240}{y}[/tex]
Putting the value x in the equation
[tex]\frac{240}{y}+y=34[/tex]
[tex]\Rightarrow \frac{240+y^2}{y}=34[/tex]
[tex]\Rightarrow 240+y^2=34y[/tex]
⇒y²-34y+240=0
⇒y²-24y-10y+240=0
⇒y(y-24)-10(y-24)=0
⇒(y-24)(y-10)=0
⇒y=24,10
When, y=24
[tex]x=\frac{240}{24}=10[/tex]
When y=10
[tex]x=\frac{240}{10}[/tex] =24
Therefore the dimensions of the fence 24 feet by 10 feet.