Respuesta :

(9) The linear function is [tex]y=\frac{1}{3}x+3[/tex]

(10) The linear function is [tex]y=0x-7[/tex]

Explanation:

(9) The coordinates from the graph are (-6,1), (-3,2), (0,3) and (3,4)

Linear function:

The linear function can be determined using the formula,

[tex]y=mx+b[/tex]

The y - intercept of the line is the value of y when x = 0.

Thus, from the graph, we have, [tex]b=3[/tex]

Let us substitute the points (-6,1), (-3,2) in the slope formula,

[tex]m=\frac{2-1}{-3+6}=\frac{1}{3}[/tex]

Thus, the slope is [tex]m=\frac{1}{3}[/tex]

Substituting the value [tex]m=\frac{1}{3}[/tex] and [tex]b=3[/tex] in the formula [tex]y=mx+b[/tex] , we get,

[tex]y=\frac{1}{3}x+3[/tex]

Thus, the linear function of the equation is [tex]y=\frac{1}{3}x+3[/tex]

(10) Linear function:

The linear function can be determined using the formula,

[tex]y=mx+b[/tex]

The y - intercept of the line is the value of y when x = 0.

Thus, from the graph, we have, [tex]b=-7[/tex]

Let us substitute the points (-2,7) and (2,-7) in the slope formula,

[tex]m=\frac{-7+7}{2+2}=\frac{0}{4}=0[/tex]

Thus, the slope is [tex]m=0[/tex]

Substituting the values [tex]m=0[/tex] and [tex]b=-7[/tex] in the formula, we get,

[tex]y=0x-7[/tex]

Thus, the linear function of the equation is [tex]y=0x-7[/tex]

ACCESS MORE