Answer: Number of atoms in [tex]500cm^3[/tex] of radon gas (radon atoms) at the same temperature and pressure is [tex]\frac{x}{2}[/tex]
Explanation:
According to avogadro's law, volume of a gas is directly proportional to the number of moles present when temperature and pressure is constant.:
[tex]\frac{V_1}{n_1}=\frac{V_2}{n_2}[/tex]
[tex]V_1 = Volume of the hydrogen gas = 1000cm^3[/tex]
[tex]n_1[/tex] = moles of hydrogen gas = [tex]\frac{xmolecules}{6.023\times 10^{23}molecules}[/tex]
[tex]V_2= Volume of the radon gas =500cm^3[/tex]
[tex]n_1[/tex] = moles of radon gas = ?
[tex]\frac{1000}{\frac{x}{6.023\times 10^{23}}}=\frac{500}{\frac{y}{6.023\times 10^{23}}}[/tex]
[tex]y=\frac{x}{2}[/tex]
Thus the number of atoms in [tex]500cm^3[/tex] of radon gas (radon atoms) at the same temperature and pressure is [tex]\frac{x}{2}[/tex]