Respuesta :

When [tex]x=-6,[/tex] the value of the expression becomes undefined so it is the non-permissible replacement for the expression.

Step-by-step explanation:

Step 1:

To determine the non-permissible replacement we substitute x with the values of 6, 3, -3, and -6.

When [tex]x=6, \frac{3-x}{6+x} = \frac{3-6}{6+6}=-\frac{3}{12} = -\frac{1}{4}[/tex],

When [tex]x=3, \frac{3-x}{6+x} = \frac{3-3}{6+3}=\frac{0}{9}=0[/tex],

When [tex]x=-3, \frac{3-x}{6+x} = \frac{3-(-3)}{6+(-3)}=\frac{6}{3} =2,[/tex],

When [tex]x=-6, \frac{3-x}{6+x} = \frac{3-(-6)}{6+(-6)}=\frac{9}{0}[/tex], any value, when divided by a zero, becomes undefined.

Step 2:

The values of options a, b, and c all have numerical values.

When [tex]x=-6,[/tex] the value of the expression becomes undefined so it is the non-permissible replacement for the expression.

ACCESS MORE
EDU ACCESS
Universidad de Mexico