The equation of the line is [tex]y=\frac{1}{4}x-\frac{29}{7}[/tex]
Explanation:
The equation of the line is perpendicular to [tex]y=-14 x-8[/tex]
The equation is of the form [tex]y=mx+b[/tex] where m=-14
Slope:
The slope of the perpendicular line can be determined using the formula,
[tex]m_1 \cdot m_2=-1[/tex]
[tex]-14 \cdot m_2=-1[/tex]
[tex]m_2=\frac{1}{14}[/tex]
Thus, the slope of the line is [tex]m=\frac{1}{14}[/tex]
Equation of the line:
The equation of the line can be determined using the formula,
[tex]y-y_1=m(x-x_1)[/tex]
Substituting the slope [tex]m=\frac{1}{14}[/tex] and the point (2,-4), we get,
[tex]y+4=\frac{1}{14}(x-2)[/tex]
Simplifying, we get,
[tex]y+4=\frac{1}{14}x-\frac{1}{7}[/tex]
[tex]y=\frac{1}{14}x-\frac{1}{7}-4[/tex]
[tex]y=\frac{1}{4}x-\frac{29}{7}[/tex]
Thus, the equation of the line is [tex]y=\frac{1}{4}x-\frac{29}{7}[/tex]