Equation of the line is [tex]y=\frac{2}{3}x-\frac{8}{3}[/tex].
Solution:
Slope (m) = [tex]\frac{2}{3}[/tex]
Point [tex](x_1, y_1)=(-5, -6)[/tex]
Point - slope form:
[tex]y-y_1=m(x-x_1)[/tex]
[tex]$y-(-6)=\frac{2}{3}(x-(-5))[/tex]
[tex]$y+6=\frac{2}{3}(x+5)[/tex]
[tex]$y+6=\frac{2}{3}x+\frac{10}{3}[/tex]
Subtract 6 from both sides.
[tex]$y+6-6=\frac{2}{3}x+\frac{10}{3}-6[/tex]
[tex]$y=\frac{2}{3}x+\frac{10-18}{3}[/tex]
[tex]$y=\frac{2}{3}x-\frac{8}{3}[/tex]
Equation of the line is [tex]y=\frac{2}{3}x-\frac{8}{3}[/tex].
The image of the graph is attached below.