Answer:
[tex]2780m/s[/tex]
Explanation:
Essentially, Kinetic energy of the particle must equal the combined potential energies of earth and the moon when the object is on the moon's surface, meaning the full equation is
[tex]M_E[/tex]=Mass of Earth=[tex]5.97*10^2^4[/tex]
[tex]M_m[/tex]=Mass of Moon=[tex]7.4*10^2^2kg[/tex]
[tex]r_E[/tex]=distance from earth's center to the moon's=[tex]3.84*10^8m[/tex]
[tex]r_m[/tex]=radius of moon=[tex]1.738*10^6m[/tex]
After some algebra, the equation simplifies to
[tex]v=\sqrt{2G*(\frac{M_E}{r_E+r_m}+\frac{M_m}{r_m})}[/tex]
Plugging in the values of G, which is [tex]6.67*10^-^1^1 \frac{m^3}{kg*s^2}[/tex], should yield the proper answer of 2780m/s.