Solve f (x) = 32^x+6•1/2 = 8^x-1

Option B: The value of x is -16
Explanation:
Given that the equation [tex]f(x)=32^{x+6} \cdot \frac{1}{2}=8^{x-1}[/tex]
We need to determine the value of x.
Let us substitute f(x) = 0, then we have,
[tex]32^{x+6} \cdot \frac{1}{2}=8^{x-1}[/tex]
Now, we shall determine the value of x.
The term [tex]8^{x-1}[/tex] can be written as [tex]\left(2^{3}\right)^{x-1}[/tex]
Hence, we have,
[tex]32^{x+6} \cdot \frac{1}{2}=\left(2^{3}\right)^{x-1}[/tex]
Also, the term [tex]32^{x+6}[/tex] can be written as [tex]\left(2^{5}\right)^{x+6}[/tex]
Thus, we have,
[tex]\left(2^{5}\right)^{x+6} \frac{1}{2}=\left(2^{3}\right)^{x-1}[/tex]
Applying the exponent rule, [tex]\left(a^{b}\right)^{c}=a^{b c}[/tex], we have,
[tex]2^{5(x+6)} \cdot \frac{1}{2}=2^{3(x-1)}[/tex]
[tex]2^{5(x+6)} \cdot 2^{-1}=2^{3(x-1)}[/tex]
If [tex]a^{f(x)}=a^{g(x)}[/tex] then [tex]f(x)=g(x)[/tex]
[tex]5(x+6)-1=3(x-1)[/tex]
Simplifying, we get,
[tex]5x+30-1=3x-3[/tex]
[tex]5x+29=3x-3[/tex]
[tex]2x+29=-3[/tex]
[tex]2x=-32[/tex]
[tex]x=-16[/tex]
Therefore, the value of x is -16
Hence, Option B is the correct answer.