Answer:
[tex]\frac{1}{32\pi} \ cm/min[/tex]
Explanation:
-Assume the snowball is a spherically perfect:
[tex]A=4\pi r^2[/tex]#
[tex]A=4\pi(\frac{D}{2})^2\\\\A=\pi D^2[/tex]
Therefore, at the time of interest, we plug the value of dA/dt and r(r=6cm):
[tex]D=2r\\\\\frac{dA}{dt}=4\pi(2r)\frac{dr}{dt}=8\pi r \frac{dr}{dt}\\\\-1.5=8\pi(6)\frac{dr}{dt}=48\pi \frac{dr}{dt}\\\\\frac{dr}{dt}=-\frac{1}{32\pi}[/tex]
Hence, the diameter is decreasing at a rate of [tex]\frac{1}{32\pi} \ cm/min[/tex]