If a snowball melts so that its surface area decreases at a rate of 3 cm2/min, how do you find the rate at which the diameter decreases when the diameter is 12 cm?

Respuesta :

Answer:

[tex]\frac{1}{32\pi} \ cm/min[/tex]

Explanation:

-Assume the snowball is a spherically perfect:

[tex]A=4\pi r^2[/tex]#

[tex]A=4\pi(\frac{D}{2})^2\\\\A=\pi D^2[/tex]

Therefore, at the time of interest, we plug the value of dA/dt and r(r=6cm):

[tex]D=2r\\\\\frac{dA}{dt}=4\pi(2r)\frac{dr}{dt}=8\pi r \frac{dr}{dt}\\\\-1.5=8\pi(6)\frac{dr}{dt}=48\pi \frac{dr}{dt}\\\\\frac{dr}{dt}=-\frac{1}{32\pi}[/tex]

Hence, the diameter is decreasing at a rate of  [tex]\frac{1}{32\pi} \ cm/min[/tex]

ACCESS MORE