Respuesta :
Answer:
34.06 W.
Explanation:
Assumptions : ideal turbine " no loss of work", no pipe or friction losses, all the available energy of water in converted to useful power.
(A) total volume of water per day in cubic meters:
1 cubic meters=1000 L
average flow from each apartment*total apartments/1000= (100/1000)*100
=10 m^3
total mass of water m= density*volume=1000*10=10000 kg
total energy of water at 30 m height= m*g*h= 10000*9.81*30=2943000 J
if all the available energy is converted to power.
power produced per day=total energy of water / time
time in seconds=24*3600=86400 s
power produced in a day=2943000/86400= 34.06 W
Answer:
34.06 W
Explanation:
Assuming ideal conditions which are assuming no fiction or pipe loss is made along the line of extraction of water
Energy of water at ideal condition ( Eₐ ) = 1000 kg/m³
height given = 30 meters
quantity of water = 100 Liters
to calculate the quantity of water in M³/s ( cubic per second )
= [tex]\frac{100*10^{-3} }{24*3600}[/tex] = 1.157 * [tex]10^{-6}[/tex]
power produced by water ( Pw) = energy of water * quantity of water in m^3/s
= 1.157 * [tex]10^{-6}[/tex] * [tex]10^{3}[/tex] = 1.157 *[tex]10^{-3}[/tex]
since it is an ideal condition all the power produced by water is converted to power produced by the contraception
Pc = ( Pw * g * h ) * n
H = height = 30
g = 9.81
n = number of apartments = 100
Pc =( 1.157 * [tex]10^{-3}[/tex] * 9.81 * 30) *100 = 34.06 W